STELLAR PROPERTIES PHYEHE-6046 Astronomy and Astrophysics

Prepared By:

Saraswati Devi
Assistant Professor
$=$ Department of Physics, Mangaldai College

Temperature

Radius

Chemical composition

Apparent Brightness

Distance

FIRST STEP IS
 MEASURING THE DISTANCE,
 BRIGHTNESS AND LUMINOSITY OF STARS

DISTANCE

- One of the most basic thing we can measure-still one of the most important and difficult task

How to determine distance(d)?

One method: Stellar Trigonometric parallax

TRIGONOMETRIC PARALLAX METHOD

To determine distance of a star

PARALLAX:

The apparent change in position observed when the star is sighted from opposite locations of the Earth's orbit around the Sun.

MEASURING PARALLAX

Fig. 2.1. Trigonometric parallax method for measuring distance to nearby stars.

The triangle showing the parallax angle p, the distance of the star to the Sun. $S E=1$ AU
$\tan p=\frac{1 A \cdot U .}{d}$
$p($ in radian $)=\frac{1 A \cdot U}{d}$

$$
p(\text { in arc second })=2.06 \times 10^{5}\left(\frac{1 \text { A.U. }}{d}\right)
$$

1 radian = 206264.81"

Definition of parsec: Put $p=1^{\prime \prime}$

It is the distance to a star that makes a parallax angle of 1 arcsec

$$
\mathrm{d}=2.06 \times 10^{5} \times 1.49 \times 10^{11} \mathrm{~m}=3.0694 \times 10^{16} \mathrm{~m}
$$

$$
1 \text { parsec }=3.26 \text { light years }=3.26 \times 9.46 \times 10^{15} \mathrm{~m}=3.083 \times 10^{16} \mathrm{~m}
$$

- $1^{\text {st }}$ successful measurement----- F.W.Bessel in 1838
- Parallax of .314" for the star 61 Cygni-distance is 3.2 parsecs which is 660000 times as far away as the Sun

The Hipparcos satellite(well above Earth's atmosphere) measured the positions and parallaxes of 120,000 stars. It has an accuracy of 0.002 arcsec.

European Space Agency's Hipparcos star-survey satellite(1989-1993)

The famous surveyor's technique of triangulation

- Good only for surveying the neighbourhood of Sun (only within a few hundred light-years)
- Distant stars-------Parallax is too small to measure

Even the nearest stars require a baseline longer than the earth's diameter

DISTANCE LADDER

The following table summarizes the distance ladder and the applicable distance for each of the ladder without elaboration. (Sky \& Telescope, January 1996).

Distance Ladder

> | $\begin{array}{l}\text { Applicable } \\ \text { Distance } \\ \text { (Light years) }\end{array}$ |
| :--- |
| $5-400$ |
| $5-4 \times 10^{3}$ |
| $200-2 \times 10^{5}$ |
| $200-2 \times 10^{7}$ |
| $800-10^{8}$ |
| $7 \times 10^{6}-2 \times 10^{9}$ |
| $7 \times 10^{6}-$ Edge |
| of the universe |
| $6 \times 10^{5}-$ Edge of |
| the universe |
| $7 \times 10^{9}-$ Edge of |
| the universe |

1. Parallax
2. Proper motions
3. Main-sequence fitting
4. Miscellaneous stellar techniques
5. Cepheid variables
6. Tully-Fischer relation
7. Sunyaev-Zel'dovich Effect
8. Gravitationally lensed Quasars
"A giant leap for humankind this distance ladder" is how the attempt to measure the universe can be aptly described.

Qn: A is twice as far as B. What is parallax of A?

$$
\begin{aligned}
& \mathrm{d}=\left(\frac{2.06 \times 10^{5} A . U_{.}}{p}\right) \\
& \mathrm{p} \propto \frac{1}{d}
\end{aligned}
$$

If distance increases, parallax decreases

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{A}}=2 \mathrm{~d}_{\mathrm{B}} \\
& \frac{p_{A}}{p_{B}}=\frac{1 / d A}{1 / d B}=\frac{d_{B}}{d_{A}}=\frac{d_{B}}{2 d_{B}}=\frac{1}{2}
\end{aligned}
$$

APPARENT BRIGHTNESS

Sometimes referred to as apparent magnitude(m)

- Most information beyond the solar system comes from light emitted by stars, galaxies, and interstellar cloud of gas and dust in every part of the electromagnetic spectrum.
- Apparent brightness is measured in terms of radiant flux
- Radiant flux depends on
- Distance between the source and the detector
- Intrinsic luminosity

STELLAR MAGNITUDE SCALE

Hipparchus observed the stars and assigned an apparent magnitude of $m=1$ to the brightest stars and $m=6$ to the dimmest stars visible to the naked eye.

Apparent magnitude (m)

is a measure of the brightness of a star or other astronomical object. Depends on luminosity and distance
Not an intrinsic property of emitting object
Its interpretation:

Brightness increases

QUANTITATIVE INTERPRETATION OF MAGNITUDE SCALE

- A difference of 5 magnitudes corresponds to change in brightness by a factor of 100

- A difference of 1 magnitude corresponds to a brightness ration of $100^{1 / 5} \cong 2.512$

- A 1st magnitude star appears 2.512 times brighter than a $2 n d$ magnitude star, 2.512^{2} times brighter

1.0	$2.512: 1$
2.0	$6.310: 1$
3.0	$15.85: 1$
4.0	$39.81: 1$
5.0	$100: 1$
6.0	$251.2: 1$
7.0	$631.0: 1$

Apparent brightness Apparent magnitude

$$
\mathrm{m}_{1}
$$

b_{1}
b_{2}
m_{2}

$$
\begin{gathered}
\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=2.512^{\left(m_{2}-m_{1}\right)} \\
\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=100^{\frac{\left(m_{2}-m_{1}\right)}{5}} \\
m_{2}-m_{1}=2.5 \log _{10} \frac{b_{1}}{b_{2}}
\end{gathered}
$$

Star A has magnitude +5 , Star B has magnitude +10 . Which of the stars is brighter and by how much?

- Smaller the magnitude, the brighter it is . So \mathbf{A} is brighter than B.
- The magnitude difference is $10-5=5$. So \mathbf{A} is 100 times brighter than B

ONCE DISTANCE AND BRIGHTNESS ARE KNOWN LUMINOSITY CAN BE CALCULATED

ABSOLUTE MAGNITUDE(M)MEASURE OF LUMINOSITY(L)

- The apparent magnitude of a star when it is brought to a fixed distance (10pc) from the Earth

To know about the stars themselves we need to know about total energy radiated by the star per sec i.e., L

- Luminosity is the Total energy emitted per second

It does not depend on distance
Intrinsic property of emitting object

- Sometimes referred to as

Absolute magnitude Intrinsic Luminosity

What L tells us?

- Rate at which a star is burning its nuclear fuel .
- Very high L --------- Die soon and vice-versa
- Tells us the Rate at which a star is aging

FLUX, LUMINOSITY AND THE INVERSE SQUARE LAW

 Brightness is measured in terms of radiant fluxFlux at a distance r is related to the star's luminosity by

$$
\begin{aligned}
& \text { Flux }(\mathrm{F})=\frac{\operatorname{Luminosity(L)}}{4 \pi r^{2}} \\
& \qquad F \propto \frac{1}{r^{2}} \quad \text { Since Lis independent of } r \\
& \text { Inverse square law for light }
\end{aligned}
$$

relates the intrinsic properties of a $\operatorname{star}(\mathrm{L}$ and M$)$ to the quantities that are measured at a distance from the star(radiant flux and m)

Connection between m and M

$$
\begin{aligned}
m_{2}-m_{1} & =2.5 \log _{10} \frac{b_{1}}{b_{2}} \\
m_{2}-m_{1} & =5 \log _{10} \frac{r_{2}}{r_{1}} \quad \text { Since } \mathbf{F} \propto \frac{\mathbf{1}}{\boldsymbol{r}^{2}}
\end{aligned}
$$

For a star with apparent magnitude m and absolute magnitude M

$$
\begin{gathered}
\mathrm{m}-M=5 \log _{10} \frac{r}{10 p c} \quad \text { Actual distance of the star } \\
r=10 p c \times 10^{\frac{m-M}{5}}
\end{gathered}
$$

Distance can also be calculated from the distance modulus relation

$$
r=10 p c \times 10^{\frac{m-M}{5}}
$$

Here $\mathrm{m}-\mathrm{M}$ is called the distance modulus because it is directly related to the star's distance

If a star's m and M are known then the star's actual distance r can be calculated

If one knows r, then measuring m one can get the value of M

RADIATION TELLS
 US THE
 TEMPERATURE, SIZE AND COMPOSITION
 OF STARS.

TEMPERATURE AND RADIUS

- Stars and planets are black body at least to a rough first approximation
- So one can use
- Wien's displacement law ---allow us to measure the T of stars
- Stefan's law ---measure size of stars

Wien's displacement law

$$
\begin{aligned}
\lambda_{\max } T & =\text { constant } \\
& =0.0029 \mathrm{mK}
\end{aligned}
$$

Connection between color and temperature

$\lambda_{\max }$ for Betelgeuse $=805 \mathrm{~nm}$
$T_{\text {surface }}=3600 \mathrm{~K}$
Betelgeuse appears red

$$
\begin{aligned}
& \lambda_{\max } \text { for Rigel }=223 \mathrm{~nm} \\
& \mathrm{~T}_{\text {surface }}=13000 \mathrm{~K}
\end{aligned}
$$

Rigel appears blue-white

- The spectra of stars were first classified during the late 1800s well before stars or atoms or radiation were well understood
- The original ordering of this classification was arbitrarily based on the prominence of particular absorption lines known to be associated with the element H
- Stars with the strongest H lines were labelled as A stars, stars with somewhat weaker H lines as B stars and so on.
- Earlier classification refined by Annie Jump Cannon in 1901
- Classified the stars into 7 classes systematically on the basis of surface temperatures.
- Different spectral lines are formed at different T , so the absorption lines in a star's spectra can be used to measure the stars T
- Details of absorption and emission lines in starlight carry a wealth of information.
- Most stellar atmospheres are primarily composed of H and He

STELLAR CLASSIFICATION

Hottest (Blue)

SPECTRAL TYPE	COLOR
O	Hottest blue-white stars
B	Hot blue-white
A	White
F	Yellow- White
G	Collow Orange
K	Cool Red
M	Very cool, dark red
L	Coolest, IR
T	

The temperature of stars around the middle of each spectral class

Spectral class	Photospheric Temperature (K)
O	40,000
B	17,000
A	9,000
F	7,000
G	5,500
K	4,500
M	3,000

For a spherical star of radius R and surface area $A=4 \pi R^{2}$, the Stefan-Boltzmann equation is

Luminosity $=4 \pi \mathbf{R}^{\mathbf{2}} \boldsymbol{\sigma} \boldsymbol{T e f f} \boldsymbol{f}^{\mathbf{4}}$

Flux $=\frac{\text { Luminosity }(\mathrm{L})}{4 \pi r^{2}}$

calculate

$$
\begin{aligned}
& \lambda_{\max } T=\text { constant } \\
& \quad=0.0029 \mathrm{mK}
\end{aligned}
$$

$$
\mathrm{R}=\frac{1}{T^{2}} \sqrt{\frac{L}{4 \pi \sigma}}
$$

If two stars have the same temperature or of the same spectral type then the one with high luminosity must be larger

- STEFAN-BOLTZMANN LAW can also give the $T_{\text {eff }}$

For a spherical star of radius R and surface area $A=4 \pi R^{2}$, the Stefan-Boltzmann equation is

$$
\text { Luminosity }=4 \pi R^{2} \sigma T e f f^{4}
$$

If L and R or Flux for a star is known then $T_{\text {eff }}$ can be calculated

Sirius A and Sirius B have $T_{\text {eff }}=10000^{\circ} \mathrm{K}$

 Sirius B is 10 magnitude fainter than Sirius A Find the radius of Sirius B??$$
\begin{gathered}
\mathrm{L}=4 \pi \mathrm{R}^{2} \sigma \text { Teff } 4 \quad \begin{array}{c}
\frac{4 \pi \mathbf{R B}^{2} \sigma T^{4} f^{4}}{4 \pi \mathrm{RA}^{2} \sigma T e f f^{4}}=\frac{L_{B}}{L_{A}} \\
\frac{\mathbf{R}_{\mathrm{B}}{ }^{2}}{\mathrm{R}_{\mathrm{A}}{ }^{2}}=\frac{10^{-4} L_{A}}{L_{A}}=10^{-4} \\
\mathrm{R}_{\mathrm{B}}=10^{-2} \mathrm{R}_{\mathrm{A}}
\end{array}
\end{gathered}
$$

MASS

- A star's mass at birth determines the basic essentials of its structure and future life.
- The behavior of stellar parameters with stellar mass is different for the higher-mass stars ((25-120) $\left.\mathrm{M}_{\text {sun }}\right)$ than for the solar type stars ((0.8-1.2) $\mathrm{M}_{\text {sun }}$

MEASUREMENT OF STELLAR MASS

Direct method- Kepler's $3^{\text {rd }}$ Law:

Total mass of the binary

- $T^{2}=\frac{4 \pi^{2} a^{3}}{G\left(m_{1}+m_{2}\right)}$

If we know the velocities then

- $\frac{m_{1}}{m_{2}}=\frac{v_{2}}{v_{1}}$

Combining (1) and (2) we can know the individual masses

MEASUREMENT OF STELLAR MASS Indirect method-Stellar models

$\mathrm{T}_{\text {eff }}$ and L are known Distance is known g(Surface gravity) is known
from spectroscopic observations from parallax
from model - fitting

$$
R=\frac{1}{T_{e}^{2}} \sqrt{\frac{L}{4 \pi \sigma}}
$$

$$
g \sim \frac{M}{R^{2}}
$$

Get the value of M

CHEMICAL COMPOSITION

- Stars vary in chemical composition
- The chemical composition of most stars is

73 \% H
25\% He
2\% other elements

Each star has its own different spectra

- Absorption lines occur when light passes through a cloud of gas, and the atoms and molecules of the gas absorb some light at some specific wavelengths, characteristics of the kind of the atoms and molecules.
- Similarly the atoms and molecules in a diffused hot gas will emit light at specific wavelengths.

HERTZSPRUNG-RUSSELL DIAGRAM

Ejnar Hertzsprung

Plot between

- Luminosity(L) or Absolute magnitude (M) and
- Effective Temperature or surface temperature (spectral class)

H-R Diagram

- Each dot is a star
- Snapshot of stars \rightarrow INTERPRETATION?
- No random distribution-> there exists a relation between a star's L and T
- 90% stars-------Main sequence band
- Massive and more luminous at upper left
- less massive and low luminosity towards bottom right
- 10% stars \rightarrow upper right
\rightarrow Red Giants and supergiants

- White dwarfs \rightarrow extremely dense
 stars
- Check theories of stellar evolution
- Check internal structures of stars
- Know the position in H-R Diagram-> know its L, size and surface temperature

Figure 1.9: Hertzprung-Russell (H-R) Diagram.

- From the HR diagram we can measure---------- radius
- Since each dot is specified by a surface temperature and luminosity we can measure the radius of a star using

$$
\text { Luminosity }=4 \pi R^{2} \sigma \boldsymbol{T e f f} f^{4}
$$

Right top-> high L-> low T, so R high->giants
Left bottom-> low L-> high T, so R low-> White dwarfs

From the HR diagram we can measure----------- distance to a star
Pick a star in H-R diagram

- from observation obtain the flux(or brightness)

$$
\text { Flux }=\frac{\operatorname{Luminosity}(\mathrm{L})}{4 \pi r^{2}}
$$

Calculate Distance

- This method known as spectroscopic parallax \rightarrow probes vast distances of galaxies (our and nearby)

A brief summary of the method used to measure the basic properties of a star

Property	Method
Distance(d)	Parallax, Spectroscopic Parallax
Luminosity(L)	If d is known, measure brightness and use $L=4 \pi \times$ distance ${ }^{2} \times$ brightness(flux)
Temperature $\left(T_{\text {eff }}\right)$	Wien's law

"The cosmos is within us; we're made of star stuff.
We are a way for the cosmos to know itself."

Carl Sagan

